Superoxide dismutase decreases mortality, blood pressure, and cerebral blood flow responses induced by acute hypertension in rats.

نویسندگان

  • X M Zhang
  • E F Ellis
چکیده

Oxygen radicals are known to be produced by the cerebral vasculature during acute, pressor-induced hypertension and are also known to inactivate endothelium-derived relaxing factor. The objective of our present study was to determine if the oxygen radical scavenger superoxide dismutase (24,000 units/kg plus 1,600 units/kg/min) alters the pressor, cerebral blood flow, and mortality responses to systemic norepinephrine in rats. Increasing doses (0.01-30 micrograms/kg i.v.) of norepinephrine were given by bolus injection to eight rats, and changes in the cortical microcirculatory blood flow were measured by laser-Doppler flowmetry. Superoxide dismutase shifted the norepinephrine-blood pressure and -cerebral blood flow dose-response curves moderately, but significantly, to the right such that it took more norepinephrine to reach a given blood pressure. However, superoxide dismutase had no effect on the autoregulation of cerebral blood flow. Additionally, whereas five (63%) of the eight control rats died after the 10 micrograms/kg norepinephrine dose, all eight rats treated with superoxide dismutase survived this dose. The mechanism by which superoxide dismutase reduced mortality is uncertain. The blood pressure and cerebral blood flow results suggest that superoxide dismutase prevents oxygen radicals from destroying endothelium-derived relaxing factors, which reduce the pressor effects of norepinephrine.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Contribution of Nitric Oxide Synthase (NOS) Activity in Blood-Brain Barrier Disruption and Edema after Acute Ischemia/ Reperfusion in Aortic Coarctation-Induced Hypertensive Rats

Background: Nitric oxide synthase (NOS) activity is increased during hypertension and cerebral ischemia. NOS inactivation reduces stroke-induced cerebral injuries, but little is known about its role in blood-brain barrier (BBB) disruption and cerebral edema formation during stroke in acute hypertension. Here, we investigated the role of NOS inhibition in progression of edema formation and BBB d...

متن کامل

Intensification of brain injury and blood-brain barrier permeability by short-term hypertension in experimental model of brain ischemia/reperfusion

Introduction: Arterial hypertension is one of the causes of stroke, and as one of the vasculotoxic conditions intensifies ischemic stroke complications. The aim of the present study was to analyze the effects of short-term cerebral hypertension on ischemia/reperfusion injury and pathogenesis of ischemic stroke. Methods: The experiments were performed on three groups of rats (N=36) Sham, cont...

متن کامل

Role of oxidative stress in the aortic constriction-induced ventricular hypertrophy in rat

Introduction:Severe abdominal aortic constriction above the renal arteries induces arterial hypertension above the stenotic site that is the cause of cardiac hypertrophy. Previous studies have shown that high blood pressure induces myocardial oxidative stress with conflicting results. In the present study, we assessed the effects of acute hypertension on the myocardial oxidative stress an...

متن کامل

Crocin prevents acute angiotensin II-induced hypertension in anesthetized rats

Objective: Angiotensin II (Ang II), the main product of renin-angiotensin system (RAS) has a well-known role in cardiovascular regulation. Over-production of Ang II is one of the important underlying mechanisms of hypertension. In this study, the effect of crocin on cardiovascular responses in rats with acute hypertension induced by Ang II was evaluated. Materials and methods: Rats were divided...

متن کامل

Ouabain treatment increases nitric oxide bioavailability and decreases superoxide anion production in cerebral vessels.

OBJECTIVE Chronic administration of ouabain induces hypertension and increases the contribution of nitric oxide to vasoconstrictor responses in peripheral arteries. The aim of this study was to analyse whether ouabain treatment alters the nitric oxide bioavailability in cerebral arteries. METHODS Basilar arteries from control and ouabain-treated rats ( approximately 8.0 microg/day, 5 weeks) w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Stroke

دوره 22 4  شماره 

صفحات  -

تاریخ انتشار 1991